

International Graduate Program in Biological Inorganic Chemistry

Course: **Bioinorganic Chemistry**

Theocharis C. Stamatatos

Professor of Inorganic Chemistry Chemistry Department University of Patras, 2023

Outline

- Oxygen transporters
- Biological activation of $O₂$
- Biological nitrogen fixation

Jan Paulo T. Zaragoza and David P. Goldberg, CHAPTER 1:Dioxygen Binding and Activation Mediated by Transition Metal Porphyrinoid Complexes , in *Dioxygen-dependent Heme Enzymes*, 2018, pp. 1-36 DOI: [10.1039/9781788012911-00001](https://doi.org/10.1039/9781788012911-00001) eISBN: 978-1-78801-291-1 From Book Series: [Metallobiology](https://pubs.rsc.org/doi/10.1039/2045-547x)

Biological Inorganic Chemistry: Structure and Reactivity 1st Edition

by [Harry B. Gray](https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Harry+B.+Gray&text=Harry+B.+Gray&sort=relevancerank&search-alias=books) (Editor), [Edward I. Stiefel](https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Edward+I.+Stiefel&text=Edward+I.+Stiefel&sort=relevancerank&search-alias=books) (Editor), [Joan](https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Joan+Selverstone+Valentine&text=Joan+Selverstone+Valentine&sort=relevancerank&search-alias=books) [Selverstone Valentine](https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Joan+Selverstone+Valentine&text=Joan+Selverstone+Valentine&sort=relevancerank&search-alias=books) (Editor), [Ivano Bertini](https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Ivano+Bertini&text=Ivano+Bertini&sort=relevancerank&search-alias=books) (Editor)

(A) Properties of O²

(i) $O₂$

- Dioxygen is obviously a very important molecule for biology:
- (i) Energy: Respiration and the enzyme catalyzed reduction to $H_2O.$
- (ii) Source of O atoms: Enzyme catalyzed biosynthetic reactions of organic substrates, referred to as $O₂$ activation.
- However, simple $O₂$ diffusion is not a sufficient means for complex multi-celled organisms to transport $\mathsf{O}_2.$
- **Complex multi-celled organisms require soluble O² transporter proteins!**

(A) Properties of O₂

(i) $O₂$

- **Problems with O² transport** in biological systems:
- (1) Low solubility of O_2 in water (5.4 mL/L at 37°C).
- (2) O_2 is an oxidizing agent and therefore toxic. Combination of O_2 and highly reducing cellular environment is thermodynamically unstable.
- (3) Reactive Oxygen Species (ROS): O_2 (superoxide), H_2O_2 , small amounts of these species can cause oxidative damage (antioxidants, catalase, peroxidase, SOD).

(A) Properties of O²

- (ii) Chemistry of $O₂$
- (a) Thermodynamics
- (1) Electron transfer reactions (products contain only O or H):

One electron reduction of $O₂$:

ne electron reduction of $O₂$ not favorable.

(A) Properties of O²

- (ii) Chemistry of $O₂$
- (a) Thermodynamics
- (2) Atom transfer reaction
- Generate C-O bonds, very important biologically speaking:

 $CH_4 + O_2 \rightarrow 2 CH_3OH$ $\Delta G = -30$ kcal/mol $2 C_6H_6 + O_2 \rightarrow 2C_6H_5OH \qquad \Delta G = -43$ kcal/mol

• These combustion reactions are very thermodynamically favorable, but they are slow! High E_{a} .

(A) Properties of O²

- (ii) Chemistry of $O₂$
- (b) Kinetics
- O₂ has a triplet ground state (two unpaired electrons in $\pi^*_{\mathbf{x}}\pi^*$ y molecular orbitals, $S = 1$).
- Reactions between $O₂$ and most organic molecules (singlet ground states) are quantum mechanically forbidden (triplet to singlet conversions are forbidden).
- Results in high energy barrier to reaction.
- Reacts readily with radical species (Including transition metals with unpaired electrons).

Electronic structure of O_2 :

dioxygen O2

bond order 2 bond energy 498 kJ

$$
\begin{array}{ccc}\n\text{triplet} & \text{singlet} \\
\big(\begin{array}{c}\n\end{array}\big) & \uparrow \\
\text{Concerted:} & \left(3O_2(\uparrow\uparrow) + \frac{1}{2}X(\uparrow\downarrow) \rightarrow \frac{3}{2}XO_2(\uparrow\uparrow)\right) \\
\text{Allowed pathway 1:} & \left(3O_2(\uparrow\uparrow) + \frac{1}{2}X(\uparrow\downarrow) \rightarrow \frac{3}{2}XO_2(\uparrow\uparrow)\right) & \text{40-70 kcal} & \text{total} & \text{ground singlet} \\
\big(3O_2(\uparrow\uparrow) \rightarrow \frac{1}{2}XO_2(\uparrow\downarrow) & \text{22.5 kcal} & \text{ground triplet state} \\
\big(3O_2(\uparrow\downarrow) + \frac{1}{2}X(\uparrow\downarrow) & \big(3O_2(\uparrow\downarrow) + \frac{1}{2}X(\uparrow\downarrow) & \big(3O_2(\uparrow\downarrow) + \frac{1}{2}X(\uparrow\downarrow) & \big) \\
\text{Allowed pathway 3:} & \left(3O_2(\uparrow\uparrow) + \frac{3}{2}X(\downarrow\downarrow) \rightarrow \frac{1}{2}XO_2(\uparrow\downarrow)\right)\n\end{array}
$$

Reactions requiring spin flips all have high activation barriers, i.e., are slow.

(A) Properties of O²

(ii) Chemistry of $O₂$

(c) Metal ion binding modes of $O₂$

- Mononuclear: Bent (σ , neutral, superoxo, or peroxo) and side on $(\pi,$ dianion)
- Bridging dinuclear: Bent end on $(\mu$ -1,2-peroxo), side on planar $(\mu - \eta^2 \cdot \eta^2 - \rho \cdot \sigma)$ peroxo or μ -dioxo), and side on bent.

(B) Biological O² transport systems

- (i) Introduction
- Special transport proteins have evolved to transport and store O_2 in organisms. Why?
- (1) Low solubility of $O₂$ in water
- (2) Supplying $O₂$ to buried tissue
- 3 types:
- (1) Hemoglobin-myoglobin: Evolutionary diverse; heme
- (2) Hemocyanin: Molluscs & anthropods; binuclear Cu
- (3) Hemerythrin: Marine invertebrates; binuclear Fe

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
- (a) Myoglobin (Mb or deoxyMb)
- Heme protein (17 kDa), coordinates O_2 reversibly and controls [O $_2$] in tissue.
- Contains one heme cofactor.
- Binds O₂ less tightly than hemoglobin at high O₂ pressure (noncooperative binding).

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
-

Deoxy: Fe(II) and vacant 6th coordination site Oxy: Fe(II) and O_2 binding in 6th coordination site

The heme group in sperm whale myoglobin. (a) The heme b (iron protoporphyrin IX) group
s the active site of myoglobin. (b) The heme b group site in a clob for protoporphyrin IX) group is the active site of myoglobin. (b) The heme b (iron protoporphyrin IX) group
is the active site of myoglobin. (b) The heme b group sits in a cleft formed by helices E and
F. The side chains of the proximal His (H93) and F. The side chains of the proximal His (H93) and the distal His (H64) are shown. For
the side chains of the proximal His (H93) and the distal His (H64) are shown. For
decay Mb a water molecule is hydrogen bonded to the dis decayMb a water molecule is hydrogen bonded to the distal His (H64) are shown. For
decayMb a water molecule is hydrogen bonded to the distal His and sits inside the ligand-
binding pocket. The view is directly into the lig binding pocket. The view is nydrogen bonded to the distal His and sits inside the ligand-
binding pocket. The view is directly into the ligand-
site of deoxyMb (PDB code: 1A6N). In addition to the distal His site of deoxyMb (PDB code: 1A6N). In addition to the distall His, a Leu (L29), Val (V68), said a Phe (F46) line the ligand-binding pocket. (d) Closeum and a Phe (F46) line the ligand-binding pocket (d) Closeum a His, a Le and a Phe (F46) line the ligand-binding pocket. (d) Closeup of the active site of oxyMb (PDB code; 1A6M). The coordinated O₂ by pocket, (d) Closeup of the active site of oxyMb (PDB code: 146M). The coordinated O₂ hydrogen bonds to the distal His. Note how the
Fe atom moves into the plane of the northwrin on binding of the distal His. Note how the Fe atom moves into the plane of the porphyrin on binding of O_2 . The distal His. Note how the
histidines are often designated by their position on binding of O_2 . The distal and proximal $\frac{1}{2}$ become moves into the paint of the porphyrin on binding of O₂. The distal and proximal
histidines are often designated by their position on the helix, a manner that is independent of
the species of Mb or Hb: T the species of Mb or Hb: The distal His is the seventh residue along helix and the species of Mb or Hb: The distal His is the species of Mb or Hb: The species of Mb or Hb: This is the species of Mb or Hb: is denoted ESU an E7His; analogously, the proximal His is denoted F8His.

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
- (b) Hemoglobin (Hb or deoxyHb)
- Heme protein (68 kDa) found in red blood cells (erythrocytes).
- 1 L human blood $= 150$ g
- A $\alpha_2\beta_2$ tetramer contains four heme cofactors (structure is analogous to four Mb units with a central cavity).
- Binds O_2 more tightly (cooperative binding) than Mb at high O_2 pressure.

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
- (b) Hemoglobin (Hb or deoxyHb)

Fig. 26.16 Haemoglobin is an $\alpha_2\beta_2$ tetramer. Its α and β subunits are very similar to myoglobin. Haem groups are shown in yellow.

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
- (c) Structure of $O₂$ binding site:
- Similar for Hb & Mb
	- Square pyramidal (5-coordinate)

720 nm violet 360 nm red

420 nm purple

> blue 490 nm

> > blue-green

450 nm

630 nm

orange

580 nm

green 520 nm

590 nm yellow

- High-spin Fe(2+)
- Fe coordination is out-of-the-plane of the porphyrin.
- Red: π - π^* (Soret)

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
- (c) Structure of $O₂$ binding site:
- Similar for Hb & Mb

- 6-coordinate
- Fe oxidation/spin state?
- Fe shrinks and drops into-theplane
- Red-purple: π - π^*
- EPR silent, 2 possibilities:
- (1) LS Fe(2+)— O_2 (neutral)
- (2) LS Fe $(3+)$ — O_2 ⁻ (superoxide)
- vO_2 ⁻ ~ 1145 cm⁻¹, found at 1103 cm⁻¹ in oxyMb.

(B) Biological O² transport systems

- (ii) Hemoglobin-Myoglobin
- (d) Cooperative binding of $O₂$ to Hb
- Cooperativity: Binding (or release) of one $O₂$ molecule to (from) Hb tetramer increases K_{eq} for binding (or release) of subsequent $O₂$ molecules.
- In mammals, the fourth $O₂$ molecule binds with 100-fold greater affinity than the first.
- Hemoglobin exists in two distinct conformations: T (*tensed*, deoxy) to R (*relaxed*, oxy) transition.

T to R transition is related to change in size of Fe ion upon O binding, movement down intoplane of porphyrin ring, and consequent tug on coordinated His residue.

Figure 13.7 The triggering mechanism for the T to R transition in hacmoglobin. (From Voet and Voet, 2004. Reproduced with permission from John Wiley & Sons., Inc.)

Figure 13.8 The $\alpha_1 - \beta_2$ interface in (a) human deoxyhaemoglobin and (b) oxyhaemoglobin. (From Voet and Voet, 2004. Reproduced with permission from John Wiley & Sons., Inc.)

(B) Biological O² transport systems

- (iii) Hemocyanin (Hc)
- Type 3 Cu protein.
- *Cyanos* is Greek for blue.
- Molluscs (octupus & snail).
- Anthropods (lobsters, scorpions, crabs, spiders, ….).
- Very complex, large protein structures; large assemblies of subunits.

"Blue blood"

(B) Biological O² transport systems

- (iii) Hemocyanin (Hc)
- (a) Mollusc Hc
- 10-20 subunits, ~9000 kDa
- Each subunit contains 8 covalently linked domains
- Each domain has a mass of ~52 kDa and contains one bimetallic Cu center
- Hc proteins are cylindrical (SEM), 190-380 Å long and 350 Å in diameter.

(B) Biological O² transport systems

- (iii) Hemocyanin (Hc)
- (a) Mollusc Hc

Fig. XI.4.5.

Oxyhemocyanin of the arthropod horse crab, L. polyphemus $[PDB code: 1NOL (oxy),]$ ILLA (deoxy)]. (a) One subunit with the side chains of the coordinated His residues shown. (b) Closeup of the active site showing the manner by which O_2 is bound by the pair of Cu atoms.

(B) Biological O² transport systems

- (iii) Hemocyanin (Hc)
- (b) Structure of $O₂$ binding site in Hc:
- Established by XAS, EXAFS & X-ray diffraction experiments.
- Bimetallic Cu⁺ with each Cu coordinated by 3 His residues:

- trigonal pyramidal
- \cdot Cu+, d¹⁰, diamagnetic
- EPR silent & colorless
- 5-coordinate, μ -η²:η²-peroxo, Cu²⁺, d⁹
- Intense blue: LMCT (peroxo-to-Cu²⁺), 580 nm
- EPR silent, strong AFM coupling
- $vO_2 \sim 750$ cm⁻¹ (H₂O₂, 880 cm⁻¹)

(B) Biological O² transport systems

- (iii) Hemocyanin (Hc)
- (c) Cooperative $O₂$ binding
- In deoxyHc, Cu⁺ centers are 4.6 Å apart; O₂ binding brings Cu²⁺ ions closer together (3.6 Å) in oxyHc.
- This movement displaces linked amino acids, which affects subunit interactions and leads to cooperativity in $O₂$ binding.
- Magnus, K. A. *Chem. Rev*. **1994**, *94*, 727-735.

(B) Biological O² transport systems

(iv) Hemerythrin (Hr)

- Rare: Found in marine invertebrates, such as non-segmented worms, some segmented worms, shrimp and priapulid families.
- Monomeric (myoHr), trimeric, and octameric forms of Hr are known.
- All feature similar subunit of 13.5 kDa (8 subunits ~105 kDa)

(B) Biological O² transport systems

(iv) Hemerythrin (Hr)

Fig. XI.4.6.

Oxyhemerythrin of the sipunculid worm, Themiste dyscrita [PDB code: 1HMO (oxy), HMD (deoxy)]. (a) One subunit of the octameric protein. (b) Closeup of the active site showing the manner by which $O₂$ is bound to a single Fe atom and is hydrogen bonded to the bridging oxo moiety.

(B) Biological O² transport systems

- (iv) Hemerythrin (Hr)
- (a) Structure of $O₂$ binding site:
- Bimetallic Fe²⁺ centers are triply bridged by OH⁻ (deoxyHr) or O^{2} (oxyHr) and two μ -1,3-carboxylate bridges from asp and glu residues; 5 of 6 remaining coordination sites occupied by His.

- \cdot Two high-spin Fe²⁺ ions
- Weak AFM coupling; $J \sim -10$ cm⁻¹
- Colorless
- Oxyhemerythrin • Two high-spin Fe^{3+} ions
- Strong AFM coupling; J ~ -100 cm⁻¹
- Two electrons are transferred from $Fe²⁺$, generating OOH (peroxide)
- •Intensely purple (peroxo-to-Fe3+ LMCT)

All together…

(A) Introduction

 O_2 activation: Insertion of O atoms from molecular O_2 to "inert" organic substrates.

- An extremely important biological reaction.
- Examples of important $O₂$ activation processes:
- (1) $CH_4 + O_2 \rightarrow CH_3OH$ by methanotrophic bacteria.

(2) Amino acid modification & peptide processing.

- (3) Biosynthesis of neutransmitters, hormones, antibiotics.
- (4) Detoxification of xenobiotics (substances foreign to a biological system), i.e. dioxins or polychlorinated biphenyls (PCBs).

(A) Introduction

- $O₂$ activation is carried out by a diverse array of enzymes (active-site structures are very similar to O_2 transporters). Two classes:
- 1. Monooxygenases: Insert one O in substrate and one O into H_2O .

$$
RH + O_2 + 2H^+ + 2e^- \rightarrow ROH + H_2O
$$

2. Dioxygenases: Insert both O atoms into substrate.

$$
H-R-R'H + O_2 \rightarrow HO-R-R' - OH
$$

(B) Monoxygenases

(i) Cytochrome P450

- Most studied and best understood $O₂$ activating enzyme.
- Found in liver tissue, and functions in mammalian metabolism: Biosynthesis of steroids (progesterone); detoxification & carcinogenesis; drug metabolism.
- Active site structure is similar to hemoglobin, exception of proximate ligand (cysteine).
- "P450" = In CO adduct, Soret band at 450 nm.

Deoxyhemocyanin and reduced tyrosinase (proposed)

Deoxyhemerythrin

Reduced MMOH

Fig. XI.5.1.

Active sites of the three known O_2 carriers (*a*) and their counterparts in oxygen activation (b). (MMOH = methane monooxygenase hydroxylase)

(B) Monoxygenases

(i) Cytochrome P450

Catalytic mechanism: Deduced from spectroscopic and crystallographic studies of cyt P450_{cam} (*Pseudomonas putida*), which hydroxylates camphor at C5.

Key step: Reduction of oxy P450 Nature of intermediate, unclear.

- (ii) Monoxygenases with dinuclear active sites
- E.g. Tyrosinase and methane monoxygenases, etc.
- Why two metal centers?
- (1) The second metal may serve as an additional electron source to reduce O_2 to peroxide without external electron donor (as is needed with cyt P450).
- (2) The second metal may serve as a Lewis acid in place of H⁺ to help cleave the O―O bond and stabilize oxide ions that form upon O―O bond cleavage.

- (ii) Monoxygenases with dinuclear active sites
- (a) Tyrosinase
- The active site is thought to be structurally similar to hemocyanin based on spectroscopic data.
- No structural details through X-ray diffraction studies are known for this enzyme.
- Function: Hydroxylation of tyrosine to L-dopa and oxidation of L-dopa to dopaquinone.
- General: Oxidation of phenols to catechols and catechols to orthoquinones.

- (ii) Monoxygenases with dinuclear active sites
- (a) Tyrosinase

(B) Monoxygenases

- (ii) Monoxygenases with dinuclear active sites
- (a) Tyrosinase

Catalytic mechanism & active species:

(B) Monoxygenases

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)
- Found in "methanotrophs", bacteria that metabolize CH_4 as energy source:

 $CH₄$ + MMO \rightarrow CH₃OH

- Two types: (i) s(soluble)MMO (iron), (ii) p(particulate)MMO (copper)
- "Multi-component" enzyme:

(1) hydroxylase (catalytic activity)

(2) reductase (e- source)

(3) third component regulates activity of (1) & (2)

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)
- Active site structure is similar to hemerythrin; contains a nonheme bimetallic iron center.
- Core: $Fe_2(\mu$ -RCO₂)₂ + 2 terminal his + 2 terminal carboxylates
- One vacant coordination site on each Fe (this is different from hemerythrin)

(B) Monoxygenases

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)

Catalytic mechanism and active site structure:

- Reaction with $O₂$ produces two intermediates which have been spectroscopically characterized.
- **P** → **(**m**-1,2-peroxo)diiron(III) species**

$$
\lambda_{\text{max}} = 700 \text{ nm (peroxo-to-Fe^{III} CT)}
$$

$$
\delta = 0.66 \text{ mm s}^{-1}
$$

(B) Monoxygenases

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)

Catalytic mechanism and active site structure:

- Reaction with $O₂$ produces two intermediates which have been spectroscopically characterized.
- $\mathbf{Q} \rightarrow \mathbf{Response}$ Responsible for oxidation of \mathbf{CH}_{4}
- Structure?
- Mössbauer suggests an AFM coupled bimetallic dioxo-bridged Fe^{IV} center, resulting from O-O bond cleavage ($\delta = 0.17$ mms⁻¹)
- EXAFS: Fe-Fe distance of 2.5 Å, supports $\mathsf{Fe}_{2}(\mu\text{-O})_{2}$ core as do DFT calculations.

(B) Monoxygenases

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)

Catalytic mechanism and active site structure:

- Two important mechanistic questions remain:
- (1) What is the nature of the P to Q conversion?
- See Que Jr. *PNAS* **2008**, *105*, 20615-20620.
- (2) What is the nature of the reaction between Q with substrate?
- See Que Jr. *Nature Chemistry*, **2010**, *2*, 400-405.

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)

(B) Monoxygenases

- (ii) Monoxygenases with dinuclear active site
- (b) Methane monoxygenase (MMO)
- (2) What is the nature of the reaction between Q with substrate?

Oxygen rebound mechanism?

(A) Introduction

- (i) Cytochrome P450
- (ii) Monoxygenases with dinuclear active sties
- (a) Tyrosinase
- (b) Methane monoxygenase
- (c) Copper hydroxylases: DBH & PHM
- Bimetallic copper containing enzymes that activate $O₂$ and stereospecifically hydroxylate substrate (aliphatic C-H bond).

(A) Introduction

- $O₂$ activation is carried out by a diverse array of enzymes (active-site structures are very similar to O_2 transporters). Two classes:
- 1. Monooxygenases: Insert one O in substrate and one O into H_2O .

$$
RH + O_2 + 2H^+ + 2e^- \rightarrow ROH + H_2O
$$

2. Dioxygenases: Insert both O atoms into substrate.

$$
H-R-R'H + O_2 \rightarrow HO-R-R' - OH
$$

- Two general classes:
- (i) Fe²⁺ mononuclear, non-heme \rightarrow "extradiol" dioxygenases (catechol dioxygenases)
- (ii) Fe³⁺ mononuclear, non-heme \rightarrow "intradiol" dioxygenases

- (a) Extradiol dioxygenases: Transform aromatic compounds into aliphatic compounds by cleavage of "extradiol" C-C bond.
- All extradiol dioxygenases share a common structural motif: 2- His-1-carboxylate facial triad:

- (a) Extradiol dioxygenases: Transform aromatic compounds into aliphatic compounds by cleavage of "extradiol" C-C bond.
- Mechanism: Substrate activation mechanism

(C) Dioxygenases

• Extradiol dioxygenases are just one class of a wide variety of Fe2+ enzymes featuring the 2-His-1-carboxylate facial triad:

- (b) Intradiol dioxygenases
- Very well understood; bacterial enzymes
- Catalyze the cleavage of enediol C-C bonds to form *cis*,*cis*muconic acid:

- (b) Intradiol dioxygenases
- Active site structure: 5-coordinate, high-spin $Fe^{3+} \rightarrow 2$ tyr, 2 his & OH.
- Rich, burgundy color (tyr \rightarrow Fe³⁺ CT)

- **(A) Introduction**
- **(B) Monoxygenases**
- **(C) Dioxygenases**
- **(D) Peroxidases & Catalases**

Preamble: Reactive Oxygen Species (ROS)

- Organisms that live in air have evolved a variety of strategies to cope with oxidative stress:
- (1) Small molecule antioxidants: ascorbate, α -tocopherol, coenzyme Q, glutathione, urate.
- **(2) Antioxidant enzymes: Superoxide dismutases, superoxide reductases, catalase, peroxidases**
- ROS: superoxide, hydroxyl radical, H_2O_2 , peroxynitrite (ONOO \cdot)
- ROS are produced from superoxide:
- (1) A side product of O_2 reduction (respiration)
- (2) Immune response: NADPH oxidase system of leukocytes produces superoxide to protect against pathogens

Preamble: Reactive Oxygen Species (ROS)

- Hydroxyl radical is the most reactive ROS.
- Produced by reaction of H₂O₂ with Fe²⁺ or Cu⁺ \rightarrow Fenton reaction:

$$
Fe^{2+} + H_2O_2 \rightarrow [(Fe^{1V}=O)^{2+} + H_2O] \rightarrow Fe^{3+} + H_2O + OH^+
$$

Agents causing oxidative damage

- initiate free radical auto-oxidation of lipids
- damage proteins, nucleic acids, carbohydrates, etc.

(D) Peroxidases & Catalases

- (a) Introduction
- 80% of O_2 taken up by breathing is completely reduced to H_2O (respiration).
- H₂O₂ is also produced as an intermediate of O₂ reduction.
- 2 heme enzymes are used as cellular detoxification agents:

(1) Peroxidases:

- H_2O_2 + 2Substrate(red) \rightarrow 2H₂O + 2Substrate (ox)
- Substrates: cytochrome c, Mn²⁺, CI-, phenol
- E.g. cytochrome c peroxidase; horseradish peroxidase

(D) Peroxidases & Catalases

- (a) Introduction
- 80% of O_2 taken up by breathing is completely reduced to H_2O (respiration).
- H₂O₂ is also produced as an intermediate of O₂ reduction.
- 2 heme enzymes are used as cellular detoxification agents:

(2) **Catalases:**

 $2H_2O_2 \rightarrow 2H_2O + O_2$

• Catalases simply disproportionate H_2O_2 ("substrate" = H_2O_2)

(D) Peroxidases & Catalases

 H_2O_2 + 2e⁻ + 2H⁺ \rightarrow 2H₂O E_{red} = +1.349 V

- Strength of O-O bond (214 kJ/mol) presents a kinetic barrier to reduction.
- Peroxidases and catalases have evolved a precise catalytic mechanism to overcome this kinetic barrier & break O-O bond heterolytically.

(D) Peroxidases & Catalases

- (b) Peroxidase
- Overall structure

Fig. XI.3.3.

The crystal structure of the most well known peroxidase, horseradish peroxidase or HRP. All non-mammalian heme peroxidases look very similar and consist of a common 10 helical core. The proximal and distal helices provide key residues important for catalysis.

(D) Peroxidases & Catalases

- (b) Peroxidase
- Active site structure

Similar to globin

(D) Peroxidases & Catalases

- (b) Peroxidase
- Compounds I & II

-Stable

-Can be spectroscopically characterized

The various spectral intermediates of HRP. The native enzyme in the $Fe³⁺$ oxidation state gives a typical high-spin spectrum. Upon oxidation with peroxide to give Compound I, the main Soret absorbance band decreases to give green Compound I. The one-electron reduction of the porphyrin radical in Compound I gives red Compound II with a Soret band shifted to longer wavelengths relative to the resting native enzyme. These easily distinguished and stable intermediates have enabled a wealth of biophysical tools to be utilized in an attempt to work out the electronic structures of the various intermediates.

(D) Peroxidases & Catalases

- (c) Catalase
- Active site & overall structure

(D) Peroxidases & Catalases

- (c) Catalase
- Mechanism

-The catalase mechanism is very similar to peroxidase, with the exception of no "step 3" because the substrate in step 2 is another equivalent of H_2O_2 .

- -Concerted 2 electron reduction.
- -No compound II

